RESONANT TUNNING THROUGH QUANTUM DOT ARRAY

  • Type: Project
  • Department: Computer Science
  • Project ID: CPU2100
  • Access Fee: ₦5,000 ($14)
  • Pages: 42 Pages
  • Format: Microsoft Word
  • Views: 364
  • Report This work

For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

ABSTRACT

This research work as aimed at calculating the resonant tunnelling energy of a quantum dot array which is the energy needed by a particle to tunnel through multiple barrier. A Hamiltonian of the form;

H

Was use to act on some states with different spin orientations to obtain four by four matrices. The Eigen value which was obtained can further be use to calculated the conductance in transition of the particle.

 

 

TABLE OF CONTENTS

Cover Page: ----------------------------------------------------------------------------------------------------i

The Fly Leaf---------------------------------------------------------------------------------------------------ii

Title Page------------------------------------------------------------------------------------------------------iii

Declaration----------------------------------------------------------------------------------------------------iv

Certification --------------------------------------------------------------------------------------------------v

Dedication: ---------------------------------------------------------------------------------------------------vi

Acknowledgement: ----------------------------------------------------------------------- -----------------vii

Table of contents:-------------------------------------------------------------------------------------------viii

Abstracts:------------------------------------------------------------------------------------------------------x

 

CHAPTER ONE:

1.1              1. Introduction ----------------------------------------------------------------------------------------1

1.2              1.2   history--------------------------------------------------------------------------------------------2

1.3              1.3   introduction to the concept of tunneling through quantum dot arrays------------------3

1.4              1.4   The Tunneling problem------------------------------------------------------------------------4

1.5              1.5   Applications of the concept of quantum tunneling----------------------------------------5

1.6              1.6   quantum dot-------------------------------------------------------------------------------------6

1.7              1.7   Quantum Confinement in Semiconductors-------------------------------------------------7

1.8              1.8   Production of Quantum Dots-----------------------------------------------------------------8

1.9              1.9  Optical properties of quantum dots ---------------------------------------------------------11

1.10          1.10 Application of quantum dots----------------------------------------------------------------12

 

CHAPTER TWO

2.1 resonant tunneling through quantum dot array process--------------------------------------------16

2.2 Incident electron of energy E Transmitted electron ------------------------------------------------17

 

CHAPTER THREE

3.0   application of hamiltonian on resonant tunneling quantum dot arrays-------------------------21

3.1   Hamiltonian to act 1-----------------------------------------------------------------------------------25

3.2   Hamiltonian to act 2-----------------------------------------------------------------------------------26

3.3   Hamiltonian to act 3-----------------------------------------------------------------------------------27

3.4   Hamiltonian to act 4-----------------------------------------------------------------------------------27

3.5   Hamiltonian to act 5-----------------------------------------------------------------------------------28

3.6 Hamiltonian to act 6-------------------------------------------------------------------------------------29

3.7 Hamiltonian to act 7-------------------------------------------------------------------------------------29

3.8 Hamiltonian to act 8 ------------------------------------------------------------------------------------30

3.9 Eigen value and Eigen vector-------------------------------------------------------------------------31 

CHAPTER FOUR

4.0   discussion of result---------- --------------------------------------------------------------------------36

CHAPTER FIVE

5.0 Recommendations---------------------------------------------------------------------------------------37

5.1 Conclusion-----------------------------------------------------------------------------------------------37             

5.2    References----------------------------------------------------------------------------------------------35

 

 

 


 

RESONANT TUNNING THROUGH QUANTUM DOT ARRAY
For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

Share This
  • Type: Project
  • Department: Computer Science
  • Project ID: CPU2100
  • Access Fee: ₦5,000 ($14)
  • Pages: 42 Pages
  • Format: Microsoft Word
  • Views: 364
Payment Instruction
Bank payment for Nigerians, Make a payment of ₦ 5,000 to

Bank GTBANK
gtbank
Account Name Obiaks Business Venture
Account Number 0211074565

Bitcoin: Make a payment of 0.0005 to

Bitcoin(Btc)

btc wallet
Copy to clipboard Copy text

500
Leave a comment...

    Details

    Type Project
    Department Computer Science
    Project ID CPU2100
    Fee ₦5,000 ($14)
    No of Pages 42 Pages
    Format Microsoft Word

    Related Works

    Resonant tunneling through Quantum dot arrays is the quantum-mechanical effect of transition through a classically-forbidden energy state. Consider rolling a ball up a hill. If the ball is not given enough velocity, then it will not roll over the hill. This makes sense classically. But in quantum mechanics, objects exhibit wavelike behaviour. For... Continue Reading
    Resonant tunneling through Quantum dot arrays is the quantum-mechanical effect of transition through a classically-forbidden energy state. Consider rolling a ball up a hill. If the ball is not given enough velocity, then it will not roll over the hill. This makes sense classically. But in quantum mechanics, objects exhibit wavelike behaviour. For... Continue Reading
    ABSTRACT A derivation of equispaced-level conduction band Hamiltonians using the coordinate-transform based procedure is presented. The procedure start with the effective-mass schrodinger equation (Luttinger and Kohn, 1995), where the local conduction-band edge is interpreted as the potential experienced by and electron in a quantum well (QW). The... Continue Reading
    ABSTRACT A derivation of equispaced-level conduction band Hamiltonians using the coordinate-transform based procedure is presented. The procedure start with the effective-mass schrodinger equation (Luttinger and Kohn, 1995), where the local conduction-band edge is interpreted as the potential experienced by and electron in a quantum well (QW). The... Continue Reading
    Call Us
    whatsappWhatsApp Us